Highly potent bactericidal activity of porous metal-organic frameworks.

نویسندگان

  • Wenjuan Zhuang
  • Daqiang Yuan
  • Jian-Rong Li
  • Zhiping Luo
  • Hong-Cai Zhou
  • Sajid Bashir
  • Jingbo Liu
چکیده

Recent outbreaks of bacterial infection leading to human fatalities have been a motivational force for us to develop antibacterial agents with high potency and long-term stability. A novel cobalt (Co) based metal-organic framework (MOF) was tested and shown to be highly effective at inactivating model microorganisms. Gram-negative bacteria, Escherichia coli (strains DH5alpha and XL1-Blue) were selected to determine the antibacterial activities of the Co MOF. In this MOF, the Co serves as a central element and an octa-topic carboxylate ligand, tetrakis [(3,5-dicarboxyphenyl)-oxamethyl] methane (TDM(8-) ) serves as a bridging linker. X-ray crystallographic studies indicate that Co-TDM crystallizes in tetragonal space group P$\overline 4$2(1) m with a porous 3D framework. The potency of the Co-TDM disinfectant was evaluated using a minimal bactericidal concentration (MBC) benchmark and was determined to be 10-15 ppm within a short incubation time period (<60 min). Compared with previous work using silver nanoparticles and silver-modified TiO(2) nano- composites over the same time period, the MBC and effectiveness of Co-TDM are superior. Electron microscopy images indicate that the Co-TDM displayed distinctive grain boundaries and well-developed reticulates. The Co active sites rapidly catalyzed the lipid peroxidation, causing rupture of the bacterial membrane followed by inactivation, with 100% recycling and high persistence (>4 weeks). This MOF-based approach may lead to a new paradigm for MOF applications in diverse biological fields due to their inherent porous structure, tunable surface functional groups, and adjustable metal coordination environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of the pillar ligand on preventing agglomeration of ZnO nanoparticles prepared from Zn(II) metal-organic frameworks

Metal-Organic Frameworks (MOFs) represent a new class of highly porous materials. On this regard,  two nano porous metal-organic frameworks of [Zn2(1,4-bdc)2(H2O)2∙(DMF)2]n (1) and [Zn2(1,4-bdc)2(dabco)]·4DMF·1⁄2H2O (2), (1,4-bdc = benzene-1,4-dicarboxylate, dabco = 1,4-diaza...

متن کامل

Synthesis of Different Copper Oxide Nano-Structures From Direct Thermal Decomposition of Porous Copper(ΙΙ) Metal-Organic Framework Precursors

Copper oxide nanostructures have been successfully synthesized via one-step solid-state thermolysis of two metal-organic frameworks, [Cu3(btc)2] (1) and [Cu(tpa).(dmf)] (2), (btc = benzene-1,3,5-tricarboxylate, tpa = therephtalic acid = 1,4-benzendicarboxylic acid and dmf = dimethyl formamide) under air atmosphere at 400,  500, and 600°C. It has also been found that the reaction temperature pla...

متن کامل

Synthesis and Characterization of Nano-Structure Copper Oxide From Two Different Copper (II) Metal-Organic Framework Precursors

Nano-structured copper oxides were successfully prepared through direct calcination of 1D ladderlike metal-organic framework [Cu2(btec)(2,2'-bipy)2]∞, (btec = 1,2,4,5-benzenetetracarboxylate and 2,2'-bipy = 2,2'-bipyridine) and porous coordination polymer [Cu(BDC)(bipy)](BDCH2), (BDC = 1,4-benzenedicarboxylate; bipy = 4,4'-bipyridine). The nano-structure of the as-synthesized samples are charac...

متن کامل

Novel Porous Iron Molybdate Catalysts for Synthesis of Dimethoxymethane from Methanol: Metal Organic Frameworks as Precursors

As a novel performance, methanol gas conversion to dimethoxymethane (DMM) in one-step based on Fe-Mo-O (iron molybdate mixed oxides) catalysts with high surface area fabricated by metal organic frameworks (MOFs) precursors was improved. For this approach, at first, Fe(III) precursors (iron (III) 1,3,5-benzenetricarboxylate (MIL-100 (Fe) and iron terephthalate (MOF-...

متن کامل

Carbon Dioxide Capture on Metal-organic Frameworks with Amide-decorated Pores

CO2 is the main greenhouse gas emitted from the combustion of fossil fuels and is considered a threat in the context of global warming. Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from power plants, followed by compression, transport, and permanent storage. Key advances in recent years include the further development of ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced healthcare materials

دوره 1 2  شماره 

صفحات  -

تاریخ انتشار 2012